Degradation of Acid Blue 113 by US/H$_2$O$_2$/Fe$^{2+}$ and US/S$_2$O$_8^{2-}$/Fe$^{2+}$ processes from aqueous solutions

Abdolmotaleb Seid-Mohammadia, Amir Shabanlooa, Mehdi Fazlzadehb, Yousef Poureshghc,*

aDepartment of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran, Tel. +98 9183786151; email: sidmohammadi@umsha.ac.ir (A. Seid-Mohammadi), Tel. +98 9183786151; email: Shabanlo_a@yahoo.com (A. Shabanloo)

bDepartment of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran, Tel. +984515513428; email: m.fazlzadeh@gmail.com

cDepartment of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran, Tel. +989148092356; Fax: +98453512004; email: yusef.poureshg@gmail.com

Received 30 June 2016; Accepted 21 March 2017

ABSTRACT

Azo dyes can lead to a number of problems in the environment due to the presence of benzene rings in their structure. Therefore, the removal of these pollutants is necessary before being discharged directly into the environment. This experimental study aimed to evaluate the degradation capability of Acid Blue 113 (AB113) by the ultrasound (US)/H$_2$O$_2$/Fe$^{2+}$ and US/S$_2$O$_8^{2-}$/Fe$^{2+}$ processes. The effects of variables like initial pH, Fe$^{2+}$, H$_2$O$_2$, and S$_2$O$_8^{2-}$ and initial AB113 concentrations on the removal efficiency were investigated using a 20-kHz batch ultrasound generator. The impact of aeration was also examined under optimum conditions; in addition, analysis of wavelength scan of AB113 dye was done. The results showed that the maximum rate of decolorization occurred at pH 3 for both processes. In US/H$_2$O$_2$/Fe$^{2+}$ process, H$_2$O$_2$ (2.5 mM), Fe$^{2+}$ (0.05 mM), and reaction time (45 min) were selected as the optimum conditions with a removal efficiency of 93.5%. Under the same conditions, 94.3% of the dye was removed via the US/S$_2$O$_8^{2-}$/Fe$^{2+}$ process. Moreover, aeration decreased the efficiency for both processes. Further, aeration improved the efficiency of US waves used solely. The highest change in the UV–Vis spectrum of AB113 was observed for US/H$_2$O$_2$/Fe$^{2+}$, US/S$_2$O$_8^{2-}$/Fe$^{2+}$, S$_2$O$_8^{2-}$/Fe$^{2+}$, and H$_2$O$_2$/Fe$^{2+}$.

Keywords: Ultrasound; Hydrogen peroxide; Persulfate; Acid Blue 113 degradation

1. Introduction

Rapid development of the textile industry and extensive use of synthetic dyes in recent decades have introduced these dyes as a major source of water pollution [1,2]. Synthetic dyes are also extensively used in various industries such as leather, cosmetics, printing inks, foodstuffs, paper and plastics, and dyestuff production [3,4]. Annually, over 7 × 10^5 tons of dye-stuff is produced worldwide; almost 10%–15% of the total amount of dyes used is found in the effluents disposed from such industries into the environment without any pretreatment [5]. Moreover, azo dyes comprise 70% of all produced dyes in the world. These dyes, due to the presence of azo groups (–N=N–) and aromatic rings in their structure, are degraded slowly in the environment and have toxic, mutagenic, and carcinogenic characteristics and impose aesthetic problems [6–8]. Therefore, the removal of these problematic pollutants has been one of the major concerns of environmental agencies [9].

Adsorption onto activated carbon, sedimentation, photodegradation, biodegradation, coagulation, and electrocoagulation are common methods for the successful
treatment of colored wastewaters. Among these, adsorption onto activated carbon is an expensive and time-consuming method, which consequently does not yield a desirable and proper efficiency [10–12]. And oxidation by chlorine compounds produces harmful chlorinated disinfection by-products. Further, flocculation and coagulation are only able to transform pollutants from liquid into solid phase [3]. In recent decades, the application of advanced oxidation processes (AOPs), as an acceptable and efficient method, has been attracting increased attention among researchers and plant operators [13].

Fenton process, which is one of the most common AOPs, is based on the production of hydroxyl radicals (OH•) as a result of the reaction between H₂O₂ and Fe²⁺ under acidic conditions [14]. In the process, Fe²⁺ is rapidly converted to Fe³⁺ reacting with H₂O₂ much more slowly than Fe²⁺. Moreover, Fe³⁺ changes slowly into Fe²⁺. Also, in Fenton reactions, the conversion of Fe²⁺ into Fe³⁺ is very slow. Therefore, the efficiency of the Fenton reaction slows down over time. But, on the other hand, the amount of chemical treatment sludge can increase as a result of continuous release of Fe³⁺ [15]. However, in order to accelerate the conversion of Fe³⁺ into Fe²⁺, the sono-Fenton process (US/H₂O₂/Fe²⁺) can be used. Thus, the H₂O₂ concentrations necessary for the reaction may also be reduced [16]. The main mechanism of US in the oxidation of the pollutants is formation of micro-bubbles [17], which develop through acoustic cavitation in water that create localized areas known as Hot Spot with temperatures as high as 5,000 K and pressures as high as 1,000 atm resulting in generation of OOH•, OH•, H•, and O•* radicals around the bubbles [18].

Ninomiya et al. [19] used sonocatalytic–Fenton reaction to degrade lignin and found that the degradation percentages of US individually, Fenton, and Sono-Fenton were, respectively, 2%, 20%, and 60% after 180 min [19]. In recent years, persulfate (S²O₇²⁻) has drawn increasing attention as a strong oxidizing agent (E° = 2.01 V). It offers some advantages over other oxidants as a relatively cheap chemical, nonselectivity in degradation of organic pollutants, high stability of generated radicals, high aqueous solubility, and a solid chemical at ambient temperature with the ease of storage and transport [20]. Besides these benefits, many studies have shown that S²O₇²⁻ has a low oxidative ability to degrade organic materials at room temperature. Therefore, it is necessary to activate S²O₇²⁻ in order to enhance its oxidation potential. The activation of S²O₇²⁻, as an AOP, can be done by heat, UV light, transition metal ions (Me²⁺), which can form the sulfate radical (SO₄•⁻) with a high oxidation potential of 2.6 V [21,22]. Among the transition metals, Fe²⁺ has widely been used to activate S²O₇²⁻. However, there are some critical barriers in the application of Fe²⁺ including the requirement for high contents of Fe²⁺, generation of a large amount of iron sludge, precipitation of Fe²⁺ as Fe²⁺ after reaction with S²O₇²⁻, and consumption of SO₄•⁻ radicals at high concentrations [23]. It was also reported that US could accelerate persulfate to generate SO₄•⁻ in US/S²O₇²⁻/Fe²⁺ process.

A study by Wang et al. [24] on the degradation of Acid Orange 7 by US/S²O₇²⁻/Fe²⁺ confirmed that the optimum pH value could be achieved at 5.8. By considering the advantages and specific features of AOPs and US in the degradation of organic compounds especially dyes, the present study aimed to evaluate the effectiveness of US/H₂O₂/Fe²⁺ and US/S²O₇²⁻/Fe²⁺ on the decomposition of Acid Blue 113 (AB113). The effects of system variables such as initial solution pH, Fe²⁺ concentration, H₂O₂ concentration, S²O₇²⁻ concentration, and initial AB113 concentration were also investigated.

2. Materials and methods

2.1. Reagents

Hydrogen peroxide (purity 30%), sodium hydroxide, sulfuric acid, sulfate ferrous, and potassium persulfate were purchased from Merck (Germany). AB113 was bought from Alvansabet Co., Hamadan, Iran. Table 1 presents the characteristics of Acid Blue 113 in the dye. A digital ultrasound generator (model LUC-405) and spectrophotometer (DR5000, HACH) were used in the experiments.

2.2. Experimental setup

All experiments were performed in a 1,250-mL batch reactor (plexiglass) [25] containing 1,000 mL of the sample immersed in a water bath to keep the temperature at 25°C [19]. In addition to temperature adjustment by the ultrasound device, cold water was fed into the reactor, and warm water was let out. Then, it was operated at 40 kHz and an emission power of 350 W, stirred at a rate of 100 rpm [26].

The schematic diagram of the experimental setup employed in this study has been displayed in Fig. 1. In order to

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Acid Blue 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular structure</td>
<td></td>
</tr>
<tr>
<td>Molecular formula</td>
<td>C₃₅H₃₅N₃NaO₂S₂</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>681.65 g/mol</td>
</tr>
<tr>
<td>Alternative name</td>
<td>Acid Fast Blue 5R</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic diagram of the experimental setup employed in this study.
investigate the effect of aeration on the samples, a pump with a capacity of 3.5 L/min was used. The absorbance of the lignin solution was measured at a wavelength range of 190–700 nm to determine the concentration of lignin. To explore the changes of UV–Vis spectra of the dye under optimum conditions, wavelengths were scanned from 190 to 690 nm. Quartz sleeves were used to scan the wavelength range.

2.2.1. Effect of initial pH

In order to investigate the effect of pH range (3–11), solutions with fixed concentration of $\text{H}_2\text{O}_2 = 2.5$ mM, $\text{S}_2\text{O}_8^{2–} = 2.5$ mM, and AB113 = 50 mg/L were prepared. Sampling was done after 45 min of the reaction. Sodium hydroxide 1 N and sulfuric acid 1 N were used to adjust the pH values of the samples.

2.2.2. Effect of Fe^{2+} concentration

In order to study the impact of Fe^{2+} concentration on the removal efficiency, some runs were conducted under the following conditions: Fe^{2+} concentration 0.01–1 mM, pH 3, $\text{H}_2\text{O}_2 = 2.5$ mM, $\text{S}_2\text{O}_8^{2–} = 2.5$ mM, AB113 = 50 mg/L, and reaction time 45 min.

2.2.3. Effect of H_2O_2 and $\text{S}_2\text{O}_8^{2–}$ concentration

In order to study the impact of concentrations of H_2O_2 and $\text{S}_2\text{O}_8^{2–}$ on the performance, some experiments were carried out under the following conditions: H_2O_2 concentration 1–10 mM, $\text{S}_2\text{O}_8^{2–}$ concentration 1–10 mM, Fe^{2+} 0.05 mM, and AB113 50 mg/L in a batch manner.

2.2.4. Effect of initial AB113 dye concentration

So as to investigate the effect of initial AB113 concentration on the decolorization effectiveness, experiments were done under the conditions as follows: dye content 25–200 mg/L, H_2O_2 concentration 2.5 mM, $\text{S}_2\text{O}_8^{2–}$ 2.5 mM, Fe^{2+} 0.05 mM, pH 3, and reaction time 45 min.

2.2.5. Effects of aeration

In order to study the effect of aeration in the processes: US/H_2O_2/Fe$^{2+}$ and US/$\text{S}_2\text{O}_8^{2–}$/Fe$^{2+}$, the removal efficiency was performed under the optimum conditions with aeration rate of 3 L/min and at reaction time of 0–45 min. Also, the impact of aeration on the efficiency of sole ultrasound waves for removing AB113 dye was examined at reaction time of 0–45 min.

2.2.6. Effects of ultrasound waves and synergistic impact of the parameters

To examine the sole and combined effects of ultrasound waves, the optimum value of the effective factors on the process was used, and the samples were collected at 45th minute.

2.3. Analysis of Acid Blue 113

The residual concentrations of the dye in aqueous solutions were determined at an absorption wavelength of 478 nm. For this wavelength, an appropriate amount of the dye was prepared at pH 7. Color changes were determined by a UV–Vis spectrophotometer (DR5000) and in quartz cuvettes at a wavelength range from 190 to 700 nm. The absorption peak occurred at a wavelength of 567 nm. To explore the effect of pH on the wavelength range, all these steps were repeated for the samples with pH 3 and 11 (Fig. 2). Wavelength scan showed that any change in pH value changes or reduces the peak values (i.e., acidic and basic pH, respectively, decreases and increases the peak). Thus, the pH of all the samples was fixed at 7 before the measurement. The results of the scan have been summarized in Table 1. In this study, a standard curve was used to calculate the amounts of absorbance as concentration in mg/L.

3. Results and discussion

3.1. Effect of initial pH

The effect of pH on the degradation rate of AB113 has been shown in Fig. 3. The highest removal efficiencies (93.5% and 94.3%) were achieved, respectively, for US/H_2O_2/Fe$^{2+}$ and US/$\text{S}_2\text{O}_8^{2–}$/Fe$^{2+}$ at pH 3. The results illustrated that the decolorization efficiency decreased significantly with increasing pH.
As can be seen, the US/H_{2}O_{2}/Fe^{3+} process showed a better performance as compared with the other process. For example, the removal efficiencies for the two processes were 7% and 43%, respectively, at pH 11.

Other studies have shown that solution pH is one of the main factors affecting the removal efficiency in chemical processes. In AOPs, pH has a direct effect on the stability of H_{2}O_{2} generation of OH* radicals and the phase of iron in the solution. Compared with other similar studies, the results demonstrated that the Fenton and Fenton-like processes have the highest efficiency in acidic conditions in the range of 2–4 [15,18]. Eq. (1) shows the Fenton’s reaction in the solution [14]:

\[
\text{Fe}^{3+} + \text{H}_{2}\text{O}_{2} \rightarrow \text{Fe}^{2+} + \text{OH}^{-} + \text{OH}^* \quad (1)
\]

In Fenton process, at pH > 5, H_{2}O_{2} cannot stay stable and rapidly dissociates into H_{2}O and O. However, the oxidation potential of OH* may decrease with increasing pH. The efficiency of the Fenton and Fenton-like processes decreases significantly when the pH in solution rises [27]. At pH above 4 in Fenton process, Fe^{3+} precipitated as iron hydroxides (Fe(OH)_{3}), which suppressed the catalytic activity for H_{2}O_{2} and lowered regeneration of hydroxyl radicals. Further increase of pH level caused the precipitation of Fe^{3+} into Fe(OH)_{3}, thereby decreasing the amounts of sludge produced. Iron only participates in reactions when it exists in solution in dissolved phase as shown in Eq. (2) [17]:

\[
\text{Fe}^{3+} + \text{H}_{2}\text{O} \rightarrow \text{Fe}^{2+}\text{OH}^{-} + \text{H}^+ \quad (2)
\]

S_{2}O_{8}^{2-}/Fe^{3+} exhibits reactions similar to that of Fenton’s regent in terms of iron phase [28,29]. Also, at pH > 9, FeOH4+, Fe(OH)_{3}+, Fe(OH)_{4}−, and Fe_{2} (OH)_{4}− species were formed that have low efficiency to activate persulfate to produce the sulfate radicals [30]. Activation of S_{2}O_{8}^{2-} by Fe^{3+} forming SO_{4}^{2−} can be slightly changed by changing pH value and tend the reaction toward the generation of OH*; this reaction occurs better at basic pH values (Eqs. (4) and (5)).

Thus, the main species of the S_{2}O_{8}^{2-}/Fe^{3+} process is highly pH dependent, and at pH < 7 (especially at 3–5) SO_{4}^{2−} is the predominant product (Eq. (3)). Both radicals are present in the solution at pH values between 7 and 9 (Eq. (4)). Under highly alkaline environments (especially pH > 12), OH* radicals are predominant (Eq. (5)).

Since the oxidation potential of the OH* radical decreases significantly under basic conditions, the degradation efficiency decreases even in the presence of this radical. The stability of SO_{4}^{2−} radicals is higher than that of OH* radicals in aqueous environments [31].

\[
\text{S}_{2}\text{O}_{8}^{2-} + \text{Fe}^{3+} \rightarrow \text{SO}_{4}^{2-} + \text{Fe}^{2+} + \text{SO}_{4}^{2-} \quad (3)
\]

\[
\text{SO}_{4}^{2-} + \text{H}_{2}\text{O} \leftrightarrow \text{OH}^* + \text{H}^+ + \text{SO}_{4}^{2-} \quad (4)
\]

\[
\text{SO}_{4}^{2-} + \text{OH}^- \rightarrow \text{OH}^* + \text{SO}_{4}^{2-} \quad (5)
\]

Chen and Huang [32] reported that the pH value for mineralizing aniline through electrical activation of persulfate in the presence of UV waves was 3. Moreover, Rao et al. [33] also degraded carbamazepine by the S_{2}O_{8}^{2-}/Fe^{3+} process.

3.2. Effect of Fe^{3+} concentration

The effect of Fe^{3+} concentration ranging from 0.01 to 1 on AB113 degradation was examined (Fig. 4). The results showed that an increase in Fe^{3+} concentration, as the source of Fe^{3+}, from 0.01 to 0.5 mM accelerated the degradation efficiency of US/H_{2}O_{2}/Fe^{3+} and US/S_{2}O_{8}^{2-}/Fe^{3+}, which reached to 98% and 99.9% from 74% and 91%, respectively. It was also found that a further increase in Fe^{3+} concentration up to 1 mM resulted in a decrease in decolorization rate of the both processes.

The reason for the effect of iron concentration in the reaction is that H_{2}O_{2} requires Fe^{3+} ions in order to generate OH* radicals (Eq. (1)). In comparison with Fe^{2+}, Fe^{3+} can better catalyze H_{2}O_{2} and generate OH* radicals.

Based on Eq. (6), the chemical reaction between H_{2}O_{2} and Fe^{3+} would result in the generation of OOH* radicals, which react slowly with organic contaminants.

However, in Fenton process, self-quenching reactions are likely to occur, especially if there is an excess of Fe^{3+} concentration in the solution (Eq. (7)), a further decrease in the efficiency due to the consumption of OH* by Fe^{3+} and more production of Fe^{2+} [34,35] is expected to happen.

\[
\text{Fe}^{3+} + \text{H}_{2}\text{O}_{2} \rightarrow \text{Fe}^{2+} + \text{H}^+ + \text{OOH}^* \quad (6)
\]

\[
\text{Fe}^{3+} + \text{OH}^- \rightarrow \text{Fe}^{2+} + \text{OH} \quad (7)
\]

However, more increase of Fe^{3+} concentration causes can result in the production of Fe(OH)_{2} (Eq. (8)), as a by-product, which can be slowly converted into Fe^{3+} ions and OOH* radicals. In US/H_{2}O_{2}/Fe^{3+} process, US irradiation can enhance this reaction leading to the increased removal efficiency. The generated Fe^{2+} reacts with H_{2}O_{2} and increases the overall removal efficiency according to Eq. (9) [36,37].

\[
\text{Fe}^{2+} + \text{H}_{2}\text{O}_{2} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{H}_{2}\text{O} \quad (8)
\]

\[
\text{Fe}^{2+} + \text{H}^+ + \text{H}_{2}\text{O} \rightarrow \text{H}_{2}\text{O}_{2}^* \quad (9)
\]

The S_{2}O_{8}^{2-}/Fe^{3+} process exhibits reactions similar to those of Fenton’s regent in terms of iron phase. Further increase of
Fe$^{2+}$ from a particular amount not only decreases the removal efficiency of the system but also causes more sludge production that decreases the overall decolorization rate due to SO$_4^{2-}$ radicals attraction by Fe$^{2+}$ in accordance with Eq. (10) [38]. In this study, the removal efficiency of both processes decreased with increasing Fe$^{2+}$ concentration above 0.5 mM.

SO$_4^{2-}$ + Fe$^{2+}$ → SO$_4^{2-}$ + Fe$^{3+}$ \hspace{1cm} (10)

3.3. Effect of H$_2$O$_2$ and S$_2$O$_8^{2-}$ on decolorization efficiency

The results indicated that an increase in H$_2$O$_2$ and S$_2$O$_8^{2-}$ concentration from 1 to 10 mM increased the removal efficiency of AB113 to some extent in both US/H$_2$O$_2$/Fe$^{2+}$ and US/S$_2$O$_8^{2-}$/Fe$^{2+}$ processes, but further increase beyond this level decreased the efficiency (Fig. 5). The maximum decolorization efficiencies in the highest amount of the applied oxidant were 99.6% and 95.6% for the both processes, respectively.

The reason is that H$_2$O$_2$ acts as an oxidant in Fenton and Fenton-related processes, and by raising its concentration, more OH radicals were produced, thereby increasing the decolorization rate [39]. With respect to S$_2$O$_8^{2-}$ concentration, further increase of oxidant concentration from a particular amount not only decreases the removal efficiency of the process but also attracts SO$_4^{2-}$ radicals from the aqueous environment, which overall declines the decolorization rate in accordance with Eq. (11) [40]. Therefore, 5 mM H$_2$O$_2$ and 2 mM S$_2$O$_8^{2-}$ were selected as the optimum contents.

S$_2$O$_8^{2-}$ + SO$_4^{2-}$ → S$_2$O$_4^{2-}$ + SO$_4^{2-}$ \hspace{1cm} (11)

3.4. Effect of initial AB113 concentration

The effects of initial concentration of AB113 on the degradation rate have been shown in Fig. 6. As can be seen from the figure, the removal efficiency decreased with increasing AB113 concentration from 25 to 200 mg/L for both processes. For example, the efficiency for US/H$_2$O$_2$/Fe$^{2+}$ and US/S$_2$O$_8^{2-}$/Fe$^{2+}$ was 57% and 68%, respectively, at the concentration of 200 mg/L.

Various studies, in which the oxidation of organic compounds has been investigated, have reported that an increase in pollutant content decreases the process efficiency. This may be due to the abatement of ratio of generated radicals to the pollutant concentration. Another reason is attributed to the further generation of intermediates, which consume the available radicals [41].

3.5. Effect of aeration

In order to investigate the effects of aeration on the decolorization, air was injected into the reactor (Fig. 7). The removal efficiencies declined from 84% and 92% to 93.5% and 94.3%, respectively, for US/H$_2$O$_2$/Fe$^{2+}$ and US/S$_2$O$_8^{2-}$/Fe$^{2+}$ after 45 min of aeration. At the same reaction time in US process individually, aeration enhanced the removal efficiency from 6% to 11%.

By the propagation of ultrasonic waves into a nonchemical reactor, the water and oxygen molecules get excited and dissociated, and in turn, reactive species are generated in
accordance with Eqs. (12) and (13). The introduction of ultrasound waves in an aqueous solution generates micro-bubbles that grow, pulsate, and collapse, and consequently lead to the formation of OH•, H•, and O• radicals [42]. After Eqs. (14) and (15), OOH• and OH• radicals are generated [43]. But in US/H2O2/Fe2+ and US/SO42−/Fe2+ processes, due to the necessity of Fe3+ presence, aeration leads to the oxidation of Fe2+ into Fe3+ forming Fe(OH)3 as a result, a decrease in efficiency occurs since Fe3+ has a lower ability to active H•.

\[
\begin{align*}
\text{H}_2\text{O}_2) + \text{OH}^+ & \rightarrow \text{H}_2\text{O} + \text{O}_2^\cdot \\
\text{O}_2^\cdot + \text{H}_2\text{O} & \rightarrow 2\text{OH}^+ \\
\text{H}^+ + \text{O}_2 & \rightarrow \text{OOH}^+
\end{align*}
\]
(12) (13) (14) (15)

3.6. Effect of US irradiation and the synergistic effect

In order to investigate the role of each parameter on the removal efficiency, sampling was done after 45 min of reaction (Fig. 8). Fe2+, US, SO42−, and H2O yielded removal efficiencies of 2.6%, 6.2%, 14.5% and 39%, respectively, at initial concentration of 50 mg/L. The results also indicated that the combination of ultrasound as US/H2O2 and US/SO42− increased the removal efficiency to 58% and 28.4%, respectively.

Evidently, UV waves in concert with H2O2 had synergistic effect increasing 12.8% the removal efficiency more. This effect for the combination of US and SO42− was 7.7%. The synergistic effects observed in US/H2O2/Fe2+ and US/SO42−/Fe2+ processes were 1.9% and 7.54%, respectively.

US waves, due to the ability to generate H2O2 directly in the solution, can simultaneously increase the process efficiency for both US and Fenton in accordance to Eqs. (16) and (18). Despite many benefits associated with the application of the US process in the purification of pollutants in water resources, as shown by the literature review, the efficiency of ultrasound waves is not considerable in removing contaminations [44,45] and since other. To overcome these disadvantages, various combined ultrasound treatment systems such as US/O2/US/H2O2, electrochemical (US/electro-Fenton), Fenton’s reagent, photocatalysts, and other catalytic oxidation processes have been studied [17]. Generally, results have shown that coupled ultrasound processes had better performance than ultrasound alone.

\[
\begin{align*}
2\text{OH}^+ & \rightarrow \text{H}_2\text{O}_2 \\
\text{OH}^+ + \text{H}_2\text{O} & \rightarrow \text{H}_2\text{O}_2 \\
2\text{H}_2\text{O}^\cdot & \rightarrow \text{H}_2\text{O}_2
\end{align*}
\]
(16) (17) (18)

US waves are also able to convert required iron in Fenton and SO42−/Fe2+ into Fe3+ and then back into Fe2+ more rapidly [46].

3.7. Analysis of UV-Vis spectrum of AB113 absorbance

Variations in the wavelength scan of AB113 adsorption in US/SO42−/Fe2+ and SO42−/Fe2+ processes have been shown in Fig. 9. As can be seen from the figure, three peaks are observed at 567, 276, and 203 nm, which all charged as reaction proceeds. Among these, the peak at 567 nm shows the highest abatement, which is attributed to the azo bond. The highest change in the UV–Vis spectrum of AB113 is observed for US/H2O2/Fe2+, US/SO42−/Fe2+, SO42−/Fe2+, and H2O2/Fe2+.

These results are consistent with the results reported by Sun et al. [47] who used the Fenton process facilitated by ultrasonic irradiation to degrade Acid Black 1. In Xu and Li [28] study, three peaks were observed on Orange G structure at 478, 328, and 259 nm. While the peaks at 259 and 328 nm are assigned to its aromatic rings, the peak at 478 nm and the shoulder peak at 421 nm are assigned to the conjugated structure formed by the azo bond. In the present study, the absorption peaks of the azo bond in SO42−/Fe2+ process also declined more slowly compared with that of aromatic rings.

4. Conclusion

The results of the present study showed that AB113 degradation yields best under acidic conditions for both US/H2O2/Fe2+ and US/SO42−/Fe2+. At Fe2+ concentration >5 mM, the decolorization efficiency decreased for the both
processes. An increase in H_2O_2 and SO_4^{2-} concentrations increased the degradation rate. Aeration in the sonochemical reactor individually increased the decolorization rate. The highest change in the UV–Vis spectrum of AB113 absorbance is assigned to $\text{US/H}_2\text{O}_2/\text{Fe}^{2+}$.

References

